Interfacing the JQMD and JAM Nuclear Reaction Codes to Geant4
نویسندگان
چکیده
Geant4 is a toolkit for the simulation of the passage of particles through matter. It provides a comprehensive set of tools for geometry, tracking, detector response, run, event and track management, visualization and user interfaces. Geant4 also has an abundant set of physics models that handle the diverse interactions of particles with matter across a wide energy range. However, there are also many well-established reaction codes currently used in the same fields where Geant4 is applied. In order to take advantage of these codes, we began to investigate their use from within the framework of Geant4. The first codes chosen for this investigation were the Jaeri Quantum Molecular Dynamics (JQMD) and Jet AA Microscopic Transport ation Model (JAM) codes. JQMD is a QMD model code which is widely used to analyze various aspects of heavy ion reactions. JAM is a hadronic cascade model code which explicitly treats all established hadronic states, including resonances with explicit spin and isospin, as well as their anti-particles. We successfully developed interfaces between these codes and Geant4. These allow a user to construct a detector using the powerful material and geometrical capabilities of Geant4, while at the same time implementing nuclear reactions handled by the JQMD and JAM models and the Hadronic framework of Geant4 proved its flexibility and expandability.
منابع مشابه
CALCULATION OF CROSS SECTION AND PRODUCTION YIELD OF RADIOPHARMACEUTICAL PRASEODYMIUM-139 THROUGH 140CE(P, 2N)139PR REACTION USING GEANT4 AND TALYS NUCLEAR CODES
Background & Aim: PET is a very useful and suitable imaging method in nuclear medicine. This method uses positrons with a special energy for imaging. The elements of the lanthanide are suitable for the decay of positrons with a specific energy for use in PET. Praseodymium-139 with a half-life of 4.5 hours is one of the useful elements in the group of lanthanides that can be used in PET. In this...
متن کاملNew native QMD code in Geant4
Recently the number of hadron therapy facilities has been increasing rapidly. Some of them are designed for heavy ions and need a tool to simulate the passage of ions through matter. As well, the space engineering field requires good estimates of device damage caused by bombarding ions in cosmic rays. As a result, demands for detailed simulations of nucleus-nucleus interactions have increased. ...
متن کاملEffects of the modulator and range compensator blades on Bragg curve and calculating the secondary particle dose in proton-therapy of thymus gland cancer using MCNPX, FLUKA and GEANT4 codes
The thymus gland is an endocrine gland that plays an important role in the body’s immunity. Thymus gland cancer happens very rarely and one treatment way is radiation therapy. Due to the location of this gland and its proximity to the sensitive organs, radiation therapy of thymus gland cancer will bring the risk of side effects. In this paper, a Mird phantom is simulated and a modulator and ran...
متن کاملDevelopment of General-Purpose Particle and Heavy Ion Transport Monte Carlo Code
The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from sever...
متن کاملCellular S-value of beta emitter radionuclide’s determined using Geant4 Monte Carlo toolbox, comparison to MIRD S-values
Introduction: Spatial dose distribution around the radionuclides sources is required for optimized treatment planning in radioimmunotherapy. At present, the main source of data for cellular dosimetry is the s-values provided by MIRD. However, the MIRD s-values have been calculated based on analytical formula in which no electrons straggling is taken to account. In this study, we used Geant4-DNA...
متن کامل